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Abstract

In this study, free vibration analysis of a rotating, double tapered Timoshenko beam that undergoes flapwise bending vibration is performed. At the beginning of the study, the kinetic and the potential energy expressions of this beam model are derived using several explanatory tables and figures. In the following section, Hamilton’s principle is applied to the derived energy expressions to obtain the governing differential equations of motion and the boundary conditions. The parameters for the hub radius, rotational speed, shear deformation, slenderness ratio and taper ratios are incorporated into the equations of motion. In the solution part, an efficient mathematical technique, called the Differential Transform Method (DTM), is used to solve the governing differential equations of motion. Using the computer package, Mathematica, the effects of the incorporated parameters on the natural frequencies are investigated and the results are tabulated in several tables and introduced in several graphics. 
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1. Introduction
The dynamic characteristics, i.e. natural frequencies and related mode shapes, of rotating tapered beams are required to determine resonant responses and to perform forced vibration analysis. Therefore, many investigators have studied rotating tapered beams, which are very important for the design and performance evaluation in several engineering applications such as rotating machinery, helicopter blades, robot manipulators, spinning space structures, etc. Klein [13] used a combination of finite element approach and Rayleigh-Ritz method to analyse the vibration of tapered beams. Downs [3] applied a dynamic discretization technique to calculate the natural frequencies of a nonrotating double tapered beam based on both the Euler-Bernoulli and Timoshenko Beam Theories. Swaminathan and Rao [15], computed the frequencies of a pretwisted, tapered rotating blade using the Rayleigh-Ritz method and including the effects of the rotational speed, pretwist angle and breadth taper. To [5] developed a higher order tapered beam finite element for transverse vibration of tapered cantilever beam structures. Sato [12] used Ritz method to study a linearly tapered beam with ends restrained elastically against rotation and subjected to an axial force. Lau [9] studied the free vibration of tapered beam with end mass by the exact method. Banerjee and Williams [11] derived the exact dynamic stiffness matrices of axial, torsional and transverse vibrations for a range of tapered beam elements. Williams and Banerjee [10] studied the free vibration of an axially loaded beam with linear or parabolic taper, and a stepped approximation is used to model the beam as a rigidly connected set of uniform members. Storti and Aboelnaga [7], studied the transverse deflections of a straight tapered symmetric beam attached to a rotating hub as a model for the bending vibration of blades in turbomachinery. Kim and Dickinson [4] used the Rayleigh-Ritz method to analyse slender beams subject to various complicated effects. Lee et al. [20] used Green’s function method in Laplace transform domain to study the vibration of general elastically restrained tapered beams and obtained the approximate fundamental solution by using a number of stepped beams to represent the tapered beam. Lee and Kuo [22] used Green’s function method to study the truncated non-uniform beams on elastic foundation with polynomial varying bending rigidity and elastically constrained ends, and an exact fundamental solution is given in power series form. Grossi and Bhat [18] used, respectively, the Rayleigh-Ritz method and the Rayleigh-Schmidt method to analyse the truncated tapered beams with rotational constraints at two ends. Naguleswaran [19] used the Frobenius method to analyse the free vibration of wedge and cone beams and beams with one constant side and another square-root varying side. Bazoune and Khulief [1] developed a finite beam element for vibration analysis of a rotating doubly tapered Timoshenko beam. Khulief and Bazoune [23] extended the work in Bazoune and Khulief [1] to account for different combinations of the fixed, hinged and free end conditions. 

In this study, which is an extension of the authors’ previous works [14, 16, 17], free vibration analysis of a rotating, double tapered, cantilever Timoshenko beam that undergoes flapwise bending vibration is performed using the Differential Transform Method, DTM, which is an iterative procedure to obtain analytic Taylor series solutions of differential equations. The advantage of DTM is its simplicity and accuracy in calculating the natural frequencies and plotting the mode shapes and also, its wide area of application. In open literature, there are several studies that used DTM to deal with linear and nonlinear initial value problems, eigenvalue problems, ordinary and partial differential equations, aeroelasticity problems, etc. A brief review of these studies is given by Ozdemir Ozgumus and Kaya [16]. 

2. Beam Configuration
The governing partial differential equations of motion are derived for the flapwise bending  vibration of a rotating, double tapered, cantilever Timoshenko beam represented by Fig.1. 
Here, a cantilever beam of length 
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, which is fixed at point 
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 to a rigid hub, is shown. The hub has the radius, 
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 and rotates in the counter-clockwise direction at a constant rotational speed, 
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. The beam tapers linearly from a height 
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 at the root to 
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 plane and from a breadth 
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 to 
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 in the 
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 plane. In the right-handed Cartesian co-ordinate system, the 
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-axis coincides with the neutral axis of the beam in the undeflected position, the 
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-axis is parallel to the axis of rotation (but not coincident) and the 
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-axis lies in the plane of rotation. 
The following assumptions are made in this study,

a. The flapwise bending displacement is small.

b. The planar cross sections that are initially perpendicular to the neutral axis of the beam remain plane, but no longer perpendicular to the neutral axis during bending.

c. The beam material is homogeneous and isotropic.

3.
Derivation of The Governing Equations of Motion

The cross-sectional and the side views of the flapwise bending displacement of a rotating Timoshenko beam are introduced in Figs.2(a) and 2(b), respectively. 

Here, a reference point is chosen and is represented by 
[image: image81.wmf]0
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 before deformation and by 
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 after deformation. 











3.1.
Derivation of The Potential Energy Expression

Examining Figs. 2(a) and 2(b), coordinates of the reference point are written as follows

a. Before deformation ( Coordinates of 
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 After deformation ( Coordinates of 
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Here, the rotation angle due to bending, 
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, is small so it is assumed that 
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The components of 
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where 
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 denotes differentiation with respect to the spanwise position 
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.

The classical strain tensor 
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e

 may be obtained using the equilibrium equation below Eringen [2]. 
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Substituting Eqs. (4) and (5) into Eq. (6), the elements of the strain tensor 
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 are obtained as follows
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In this work; 
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 are used in the calculations because as noted by Hodges and Dowell [6], for long slender beams, the axial strain 
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 can be neglected.

In order to obtain simpler expressions for the strain components, higher order terms should be neglected so an order of magnitude analysis is performed by using the ordering scheme, taken from Hodges and Dowell [6] and introduced in Table 1. 

The Euler-Bernoulli Beam Theory is used by Hodges and Dowell [6]. In the present work, their formulation is modified for a Timoshenko beam and the following new expression is added to their ordering scheme as a contribution to the literature. 
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Using Table 1, the strain components in Eq.(7) can be reduced to
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Using Eq. (9), the potential energy expressions are derived. The potential energy contribution due to flapwise bending, 
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, is given by 
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Substituting the first expression of Eq. (9) into Eq. (10), taking integration over the blade cross section and referring to the definitions given by Table 2, the following potential energy expression is obtained for flapwise bending 
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The uniform strain, 
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, and the associated axial displacement, 
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where the centrifugal force is given by
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Substituting Eq. (12) into Eq. (11) and noting that the 
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, the final form of the bending potential energy is obtained as follows
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The potential energy contribution due to shear, 
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, is given by 
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Substituting the third expression of Eq. (9) into Eq. (15) and referring to the definitions given by Table 2, the following potential energy expression is obtained for shear
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Summing Eqs.(14) and (16), the total potential energy expression is obtained
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3.2.
Derivation of The Kinetic Energy Expression

The velocity vector of the reference point 
[image: image179.wmf]P

 due to rotation of the beam is expressed as follows 
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Substituting the coordinates given by Eq. (2) into Eq.(19), the velocity components are obtained as follows
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Using Eq. (20), the kinetic energy expression, 
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 , is derived as shown below.
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Substituting Eq.(20) into Eq.(21) and referring to the definitions given by Table 3, the final form of the kinetic energy expression is obtained. 


[image: image188.wmf](

)

2

0

2

2

2

2

2

1

C

dx

I

I

w

A

L

y

y

+

W

+

+

=

Á

ò

q

r

q

r

r

&

&







        (22)

where 
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 includes the constant terms 
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3.3.
Application of The Hamilton’s Principle 
The governing equations of motion and the associated boundary conditions can be derived by means of the Hamilton’s principle, which can be stated in the following form for an undamped free vibration analysis.
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Using variational principles, variation of the kinetic and potential energy expressions are taken and the governing equations of motions of a rotating, nonuniform Timoshenko beam undergoing flapwise bending vibration are derived as follows
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Additionally, after the application of the Hamilton’s principle, the associated boundary conditions are obtained as follows

· The geometric boundary conditions at the fixed end, 
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, of the Timoshenko beam, 
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· The natural boundary conditions at the free end, 
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Shear force: 
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Bending Moment: 
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The boundary conditions expressed by Eqs. (25b)-(25c) can be simplified by noting that 
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4. Vibration Analysis 

4.1. Harmonic Motion Assumption 

In order to investigate the free vibration of the beam model considered in this study, a sinusoidal variation of 
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 with a circular natural frequency, 
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, is assumed and the functions are approximated as 
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Substituting Eq. (27) into Eqs. (24a) and (24b), the equations of motion are expressed as follows
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4.2.
Tapered Beam Formulation and Dimensionless Parameters

The basic equations for the breadth 
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 of a beam that tapers in two planes are as follows
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where the breadth taper ratio, 
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 and the height taper ratio, 
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 are given by 
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The values of the constants, 
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 and 
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, depend on the type of taper. In this study, 
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 values are used to model a beam that tapers linearly in two planes. Since the Young’s modulus
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, the shear modulus 
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 are assumed to be constant, the mass per unit length 
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 and the shear rigidity 
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 vary according to the Eqs. (29a) and (29b).

In order to make comparisons with the results in open literature, the following dimensionless parameters can be introduced. 
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Substituting the tapered beam formulas and the dimensionless parameters into Eqs.(28a) and (28b), the following dimensionless equations of motion are obtained for the linear taper case (
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, 
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n

). 


[image: image252.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0

~

1

1

1

~

1

1

~

4

3

1

2

3

1

1

2

1

4

2

2

4

3

2

=

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

-

-

÷

ø

ö

ç

è

æ

W

+

-

-

÷

ø

ö

ç

è

æ

W

+

ú

û

ù

÷

÷

ø

ö

-

-

+

+

-

+

ê

ë

é

ç

è

æ

+

-

-

+

-

-

+

-

+

q

m

d

d

d

d

d

d

d

d

d

d

x

d

w

d

x

c

x

c

x

d

d

s

w

x

c

x

c

x

d

w

d

c

c

x

c

c

c

c

x

c

c

x

x

c

c

c

c

c

c

c

c

x

d

d

h

b

h

b

h

b

h

b

h

b

h

b

h

b

h

b

h

b

h

b

  
(32a)

[image: image253.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

0

~

1

1

1

1

1

1

1

2

3

2

2

2

3

=

÷

ø

ö

ç

è

æ

-

-

-

+

-

-

W

+

+

ú

û

ù

ê

ë

é

-

-

q

q

m

q

x

d

w

d

x

c

x

c

s

x

c

x

c

r

x

d

d

x

c

x

c

x

d

d

h

b

h

b

h

b

 

      (32b)
Additionally, substituting the dimensionless parameter into Eqs.(25a)-(26b), the dimensionless boundary conditions of a rotating, cantilever Timoshenko beam can be obtained as follows 

At 
[image: image254.wmf]0

=

x


 
[image: image255.wmf]0

~

=

=

q

w

 



  



      (33a)

At 
[image: image256.wmf]1

=

x



[image: image257.wmf]0

~

=

-

q

x

d

w

d


and 

[image: image258.wmf]0

=

x

d

d

q


  



      (33b)
5. The Differential Transform Method

The differential transform method is a transformation technique based on the Taylor series expansion and is a useful tool to obtain analytical solutions of the differential equations. In this method, certain transformation rules are applied to both the governing differential equations of motion and the boundary conditions of the system in order to transform them into a set of algebraic equations. The solution of these algebraic equations gives the desired results of the problem. It is different from high-order Taylor series method because Taylor series method requires symbolic computation of the necessary derivatives of the data functions and is expensive for large orders. 



























 Details of the application procedure of DTM is explained by Ozdemir Ozgumus and Kaya [16] using several explanatory tables.
6. Formulation with DTM

In the solution step, DTM is applied to Eqs.(32a) and (32b) and the following expressions are obtained. 
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Additionally, DTM is applied to Eqs.(33a)-(33c) at 
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In Eqs.(34a)-(35b), 
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7.
 Results and Discussions
The computer package Mathematica is used to write a code for the expressions given by Eqs.(34a)-(35b). The effects of the rotational speed, hub radius, slenderness ratio and taper ratios on the natural frequencies are investigated and the related graphics are plotted. Additionally, in order to validate the calculated results, comparisons with the studies in open literature are made and a very good agreement between the results is observed. 
In Fig.3, convergence of the first four natural frequencies with respect to the number of terms, 
[image: image307.wmf]m

, used in the DTM application is introduced. In order to evaluate up to the fourth natural frequency with five-digit precision, it was necessary to take 39 terms. During the calculations, it is noticed that when the rotational speed parameter is increased, the number of the terms has to be increased to achieve the same accuracy. Additionally, here it is seen that higher modes appear when more terms are taken into account in DTM application. Thus, depending on the order of the required mode, one must try a few values for the term number at the beginning of the Mathematica calculations in order to find the adequate number of terms. 

In Fig.3, variation of the first three natural frequencies of a rotating, tapered Timoshenko beam with respect to the rotational speed parameter, 
[image: image309.wmf]W

 and the hub radius parameter, 
[image: image310.wmf]d

, is introduced.As expected, the natural frequencies increase with the increasing rotational speed parameter due to the stiffening effect of the centrifugal force that is directly proportional to the square of the rotational speed. Moreover, as it is seen in Fig.3, 
[image: image311.wmf]d

 makes the rate of increase of the natural frequencies larger because the centrifugal force that is directly proportional to the hub radius makes the beam stiffer with the increasing 
[image: image312.wmf]d

. 
In Table 4, variation of the natural frequencies of a uniform beam with respect to the inverse of the slenderness ratio, 
[image: image313.wmf]r

, and the rotational speed parameter, 
[image: image314.wmf]W

, is introduced and the results are compared with the ones given by Banerjee [10]. Besides increasing with the rotational speed parameter, the natural frequencies decrease as the inverse of the slenderness ratio, 
[image: image315.wmf]r

, increases. At 
[image: image316.wmf]12
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W

, the decrease in the frequencies due to 
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 is 7 % for the first mode, 23.12 % for the second mode, 37 % for the third mode and 59.7 % for the fourth mode. Comparing the percentage decrease in the frequencies, it is noticed that the effect of the slenderness ratio is dominant on the higher modes and this effect diminishes rapidly as the frequency order decreases. It is something expected because the Timoshenko Beam Theory is used when the higher mode frequencies are of interest. The effect of the slenderness ratio can be observed better in Fig.5 where variation of the natural frequencies with respect to the inverse of the slenderness ratio, 
[image: image318.wmf]r

 is shown. 
In Table5, variation of the natural frequencies of a nonrotating Timoshenko beam with respect to different combinations of breadth and height taper ratios is given as reference values for the future studies and the results are compared with the ones calculated by Downs [3]. 
Furthermore, in order to observe the effects of the taper ratios, Figs.6(a) and 6(b) can be considered. As it is seen in Figs.6(a) and 6(b), the breadth taper ratio, 
[image: image319.wmf]b

c

, has very little, even no influence on the flapwise bending frequencies while the height taper ratio, 
[image: image320.wmf]h

c

, has a linear decreasing effect on the natural frequencies except the fundamental natural frequency, which increases a little with 
[image: image321.wmf]h

c

.

8. Conclusion


The main contributions of this study to the literature appear in the derivation of the governing equations of motion and they can be listed as follows:

· Derivation of both the potential and the kinetic energy expressions are made in a very detailed and clear way.

· In the study of Hodges and Dowell [6], the Euler-Bernoulli Beam Theory is used and in the present study, their formulation is modified for the Timoshenko Beam Theory and a new expression, 
[image: image322.wmf])
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, is added to their ordering scheme as a contribution to the literature.

The effects of the slenderness ratio, hub radius, rotational speed and taper ratios on the natural frequencies are examined. The following results are obtained:

· The natural frequencies increase with the increasing rotational speed and this rate of increase becomes larger with the increasing hub radius parameter,
[image: image323.wmf]d

.
· The effect of the rotational speed is dominant on the fundamental natural frequency and this effect diminishes rapidly as the frequency order increases. 

· The height taper ratio has a little increasing effect on the fundamental natural frequency. The other natural frequencies decrease as the height taper ratio increases.
· The breadth taper ratio has very little, even no influence on the bending frequencies.
· Inverse of the slenderness ratio has a decreasing effect on the natural frequencies. Therefore, natural frequencies of a Timoshenko beam are lower than the natural frequencies of an Euler-Bernoulli beam. 
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Figure 3. Convergence of the first four natural frequencies (
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Figure 5. Variation of the natural frequencies of a uniform rotating Timoshenko beam with respect to the inverse of the slenderness ratio effect, 
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Table 1. Ordering scheme for Timoshenko beam formulation
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Table 2. Area integrals for the potential energy expression
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Table 3 Area integrals for the kinetic energy expression
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Table 4. Variation of the natural frequencies of a uniform Timoshenko beam with respect to the inverse of the slenderness ratio parameter, 
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